
the t e m p e r a t u r e ;  s ,  its p a r a m e t e r ;  Iv(x), the Besse l  function with imag ina ry  a rgument  of o rde r  v; Kv (x), the 
MacDonald function of o r d e r  v; J and | d imens ion less  t e m p e r a t u r e ;  Pc,  Pomeran t z  number ;  Bi, Blot number;  
Fo, F o u r i e r ' s  number ;  p, d imens ion less  po la r  radius;  bl*,  d imens ion less  radius  of the c i r c l e  on which the in-  
clusions a r e  placed; R*, d imens ion less  radius of the plate.  

i. 

2. 

3. 

4. 
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N U M E R I C A L  M E T H O D  F O R  S O L V I N G  H E A T - C O N D U C T I O N  

P R O B L E M S  F O R  T W O - D I M E N S I O N A L  B O D I E S  O F  C O M P L E X  

S H A P E  

Y u .  K .  M a l i k o v  a n d  V.  G.  L i s i e n k o  UDC 536.24.02 

A f in i te -d i f ference  scheme  is descr ibed  for  a cu rv i l inea r  orthogonal net which pe rmi t s  the use  
of a single a lgor i thm for  calculat ing bodies of var ious  shapes .  

The cons t ruc t ion  of cu rv i l inea r  d i f ference  nets by calculat ing the conformal  mapping of a canonical  
region (rectangle) into the given region was desc r ibed  in [1]. Unlike a rec tangu la r  net which is typical  for  
the f in i te -d i f ference  method [2-4] and in p rac t i ca l l y  impor tan t  cases  b e a r s  l i t t le r e s e m b l a n c e  to the bound- 
a r i e s  of the body, an orthogonal net re f lec ts  the nature  of the boundary,  and has  no nonregular  nodes.  An 
orthogonal net is m o r e  convenient to work  with than the nets commonly  used in the method of finite e lements  
[5] since all quanti t ies r e f e r r i n g  to the nodes of such a net (e. g . ,  the i r  coordinates)  can be wri t ten in the fo rm 
of a r ec tangu la r  ma t r ix .  Using equations of the ell iptic type as an example ,  va r i a t iona l -d i f f e rence  schemes  

for  such nets we re  d iscussed  in [6]. 

An analys is  in [7] showed that  f in i te -d i f ference  schemes  have dist inct  advantages over  va r i a t iona l -d i f -  
fe rence  schemes  in solving heat-conduct ion p rob lems .  Fo r  this r e a son  the f in i te -d i f ference  method is of 
g rea t  in te res t  for  solving heat-conduct ion p rob l ems  with orthogonal nets [8]. The p rac t i ca l  use of the a lgo-  
r i t hm obtained conf i rmed its adequate accuracy ,  high speed,  and, what is pa r t i cu la r ly  impor tan t ,  the s imp l i c -  
ity of i ts  appl icat ion for  bodies of var ious  shapes .  However ,  it is not c l ea r  f r o m  [8] under what conditions 
and at what ra te  the scheme  converges  to the solution of the or iginal  equation. 

We desc r ibe  a p rocedure  which employs  a se t  of s tandard  p r o g r a m s  to automate the p roces s  of solving 
the heat -conduct ion  equation fo r  a b road  c lass  of two-dimens iona l  regions .  If an or thogonal  net is const ructed 
by conformal  mapping,  the r a t e  of convergence  of the f in i te -d i f ference  scheme  can be es t imated .  

Let  the function F(w) = F(u + iv) map the rec tangle  G conformal ly  into the region G* in the (x, y) plane. 
We a s s u m e  that F(u + iv) is known and that  0 F / S w  exis ts  and is finite on the boundary  Fof  the rec tangle .  The 
l a t t e r  impl ies  that  G* is a cu rv i l inea r  quadrangle  in which all the angles a r e  r ight  angles .  

We cons ider  the p rob lem for  the heat -conduct ion  equation posed in G*: 

aT (1) 
c ~ L T ~ Q ,  

Ox 
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Fig.  1. R e c t a n g u l a r  (a) and c u r v i l i n e a r  (b) ne t s .  

T I r * = f ( x ,  j ,  T), T(x, !/, O)=To(x ,  ~). 

Here F* is the boundary of region G*; LT = 
Q =Q(x, y, T). 

In the coordinates u, v Eq. (i) can be written in the form 

; k =  ~(x ,  y , z ) ; c = c ( x ,  y,  7) > O; 

0@ ] 
c (Li + L~)O : Q, 

0-~ g 

e l f - f  (u, v, % O(u, v, O)=To(u, v). 

(2) 

H e r e  F is the b o u n d a r y  of the r e c t a n g l e  G; L 1 | = OuO ( k ~-uO@ ); L~@ = O---v-O 

ou ) ~ >o .  \ 

Assuming that problems (i) and (2) have a unique solution, 

( )~ O0 ~, OF (W) 2 

o (u, v) = 7" (x (u, v), y (u, v)). (3) 

We construct in G the net {(u = ui, V=Vk), i= 0, 1 ... N, k= 0, 1 ... M}shownin Fig. i. In mapping the 
rectangle G into G* the point (ui, Vk) is mapped into the point (x(ui, Vk) y(ui, Vk) ) and the side of the rectangle 
Aui {(ui-i Vk) , (ui, Vk)} is mapped into an arc which subtends the chord lu(ui, Vk, Aui) ~/._-r=---- 3 = , = g(uivk) Aui+O(Aui). 

The side of the rectangle Av k = {(ui, Vk_i), (ui, Vk)} is mapped into an arc with the chord 

H e r e  ui = (ui-1 +u i ) / 2 ;  Vk= (Vk-1 + Vk)/2- 

We w r i t e  fo r  (2) a l oca l l y  o n e - d i m e n s i o n a l  s c h e m e  [9], and so lve  in s u c c e s s i o n  the  equat ions  

01 + ' -  0{ 
d+1 DA~Oi +l = F1+I/2, 

At (4) 

ci+l 0~+~ - -  0~ DA20/+I = Fi+l/2 
A-c 

with the in i t ia l  condi t ions  0~ = T O (u, v) ,  01J = 02J, j = 1, 2 . . . . .  02J = 01J +1, j = 0, 1, 2 . . . .  The b o u n d a r y c o n d i -  
t ions  fo r  0 lJ a r e  the va lues  of  f (u ,  v,  rJ) on the  s ides  of  the  r e c t a n g l e  G p e r p e n d i c u l a r  to the u ax i s ,  and f o r  
0 lJ the va lues  of  f (u, v ,  Tj) on the  s ides  p e r p e n d i c u l a r  to  the  v ax is .  The  so lu t ion  of the p r o b l e m  is by  de f in i -  
t ion the  e l e m e n t  0J = 09. H e r e  0J ~ ~; cJ ~ c; FJ ~ Q; D ~ 1 / g  a r e  the va lues  of  the n e t w o r k  funct ions  at  the  
t i m e  Tj = Ar j .  We denote  the  coe f f i c i en t s  of the  d i f f e r e n c e  o p e r a t o r s  A I ~ I~ and A 2 ~ L 2 as fol lows:  

Ai,k = k(ui ,  vh, Tj), B[,~ = )~(u~, vh, "ri), 
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A-u~ = (Au~ -1- Aui+~)/2, Av~ = (Avh + AVh+l)/2. 

If  0 (U, V, ~') and Q (u, v, r )  a r e  suf f ic ient ly  smooth  [9], the loca l ly  one -d imens iona l  s c h e m e  (4) conve rges  
u n i f o r m l y  to  the soiut ion of p r o b l e m  (2) at a r a t e  O(h 2 + A~ ,  h = m a x ( A u i ,  AVk), 1 _< i - N, 1 _<_ k -<- M. 

,We now a s s u m e  that  we know only the coo rd ina t e s  of the nodes of the or thogonal  net {Xi,k, Yi,k}. Let  

lu~,~ = ~ (x~,~ - -  x~_~,~) ~ + (yi,~ - -  y~_~,~)2, 

lv~,~ = V'(x .~ - -  xi,~-~) ~ + (W,~ - -  !,'~,~-~) ~, 

lu--l,h = ( lui - i ,h  @ lUi,h)/2, lv--i,h - -  ( lvi ,~-i  + lvi,h)/2, 

t = max (lug,h, lvi,~), 1 <~ i <~ N, 1 <~ k .<. M. 

We requ i r e  that  the condi t ions  

lu~,~ = lu (u~, v~, Au3 + 0 (auY + av~), 

be satisfied. For this it is sufficient that 

x~,~ = x (u .  v~) + 0 (Au~ + ~v~), 

w,~ = y (u~, v~) + 0 (~u~ + Av~). 

Let us consider scheme (4) with perturbed coefficients: 

AU i lVi,h -{- lVi--l,k 

' \ 2 ' 2 ' Av~ 2tui,~ 

( ) hv~ Iu i ,~+lu i ,~_~  B;[~ = )~ x~,~ + x~,~_~ y~,~ + W,~-~ ~ 
' . 2 ' 2 ' Au~ 2lv~,n 

c;[~ = c(x~,~, y,,~, ~ ) =  c[,~(~ + o(l~)), 
*] 

Fi,h = Q (xi,h, yi,h, X~) = F[,h (1 -}- 0 (lZ)), 

D* Au~ Avh _ De ~ (1 + 0 (l)). i,h 
lu~.~ lv~.~, 

= A~ ~(1 + O ( l ) ) ,  

= Bi,~ (1 + 0 (l)), 

(5) 

After some simple transformations we obtain instead of (4) 

C'i+1 

C'i+~ 

AT D~A~ 1 = F*i+~/2, 

t*ff +a - -  t*j ~ ~ ~*i+l F*]+I/2" 

(6) 

We spec i fy  t h e i n i t i a l  da ta  in the f o r m  t2*J = ta *j+l, j = 0, 1, 2 . . . .  tl *~ = To (xi, k, Yi, k) = 0~ (1 + O (/2)), t l ,  j = 
t2*J , j = 1,  2 . . . .  The boundary  values  for  tt*j and t2*J a r e  speci f ied  on pa i r s  of opposi te  s ides  of  the c u r v i l i n e a r  
quadrang le  by the funct ion f(x, y,  T). Be c a use  of (5) f (x i ,  k, Yi,k,  T)=  f(u i, V k, T ) ( 1  + O (/2)). H e r e  

ff)t = 1/l--vi,k; D2 = 1/lui,h; 

*i t*i 1 7t i  t i + l , h  - -  i,h 

- *i 1 (~i  
A2ti'k = -i-vi,~ i,~+I 

7t[,k = ~. ( x~,h +2xi-1'~ 

[~,k = ~ ( x~,k +2x~'k-~ 

*i " 1 
[ui;h 

*i *i *i *i ) tt,h+l - -  ti,h [3i,k t i , ~ - -  ti,k-1 );  
lVi,h+l loi,k 

yi,h + Vi,k-1 ~j) (~i k + ~,k-~)/2. 
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Fig. 2. Examples of the construct ion of an o~hogonal net. 

Thus, the coefficients in Eq. (6) are uniquely determined i f  the coordinates of the nodes of the orthogonal net 
{x i ,  k, Yi, k} are known. This permits considering (6) fo rmal ly  as a local ly  one-dimensional scheme apI:,roxi- 
mating the original Eq. (i) by an orthogonal net constructed in the curvilinear quadrangle O*. Here A1 and ~2 
are positive self-adjoint operators which ensure the unconditional stability of the implicit scheme (6). 

In the class of functions | having continuous derivatives 02| 2 and 82| 2, the following estimates 

hold: 

/9~X10 = DAI0 + 0 (1), /J2A20 = DA20 -}- 0 (1), 

which enable one to prove the uniform convergence of t* to 0 at a rate of O(/), and consequently also the con-  
vergence of t* to the solution of problem (2) at the rate O(l + A~). Taking account of (3) and (5), the uniform 
convergence of t* and ~ implies the uniform convergence of t* to the solution for T of the original problem (1) 
at the rate O (l + AT): 

IIT:-- t*:l lc~M(l+A~ ), 1 =  1, 2 . . . .  (7) 

where l = max ( lui ,k;  lv i ,k) ,  1 _<_ i _ N, 1 _< k --< M. 

The procedure  descr ibed can be used in other  schemes (e. g . ,  longitudinal- t ransverse)  and for  other  
boundary conditions, and enables one to obtain the i r  analogs on an orthogonal net, In the case of a locally one- 
dimensional scheme it is possible to t rea t  more  complicated regions G consist ing of curvi l inear  quadrangles 
Gi* in each of which its own orthogonal net is constructed.  The t ransformat ion  to an orthogonal net is always 
considered as a small  per turbat ion of the coefficients of the original scheme. 

It can be required of any scheme that the solution depend continuously on the perturbat ion of the coeffi-  
cients of the difference opera tor  (the coefficient stabili ty of the scheme).  Hence it follows that the analog of 
the scheme converges uniformly on an orthogonal net. 

At the present  t ime methods are  being developed for construct ing curvi l inear  nets in a preass igned r e -  
gion [10]; numerica l  methods of conformal  mappings are  also known [11]. Therefore ,  such a procedure  enables 
one to automate the solution of the heat-conduction equation in a complex region. 

We note that the construct ion of an orthogonal net in a region is not unique; it can be constructed by tak-  
ing account of the special  features  of the problem. An interest ing example of this is the net in the quadrangle 
abcd shown in Fig. 2. In the neighborhood of point 2 the nodes are  close together ,  which enables one to obtain 
detailed information about the t empera tu re  distr ibution at this location. At point 1 the nodes of the net are  far  
apar t ,  but it is known beforehand that the t empera tu re  gradients here  are  not large.  

Calculations for such a region by the conventional locally one-dimensional  scheme for a rectangular  net 
(933 nodes) and by our method for  an orthogonal net (964 nodes) were compared.  Figure 3a compares  the solu-  
tions of the nonlinear heat-conduct ion equation with zero initial conditions. The boundary conditions are  shown 
in Fig. 2a. Because of the s t rong tempera tu re  dependence of X and pc {Fig. 3b), the solution of the problem 
resembles  thermal  waves. It is c lear  that both methods give prac t ica l ly  the same resul t ,  but interpolation of 
the t empera tu re  in the neighborhood of point 2 f rom its known values at the nodes is more  rel iably per formed 
with the orthogonal net, since it has a high densi ty  of nodes in this region. In this case the computational t imes 
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Fig. 3. Comparison of calculations for a step region: a) 
t empera tu re  distr ibution in c ross  sections AA (curve 1) 
and BB (curve 2) for  Fo = ~0T/P0C0X02 = 0.01; curves  ca l -  
culated by our  method (964 nodes of an orthogonal net),  
points calculated by conventional method (933 nodes of a 
rec tangular  net); b) dependence of the rmal  conductivity 
X (T)/X (T = 0) and volumetr ic  heat  capaci ty  pc (T) /pc(T = 
0) on t empera tu re  T in ~ 

for  an orthogonal and a rec tangular  net tu rn  out to be prac t ica l ly  the same.  Thus,  even when the region is 
subdivided into rec tangular  e lements ,  the use of an orthogonal net may be expedient if, for  example,  it is 
nece s sa ry  to bunch the nodes of the net near  a s ingular  point. 

The main advantage of the method descr ibed  is that in switching f rom one body to another  the same p ro -  
gram can be used, whereas  with a rec tangular  net the whole p rog ram must be prac t ica l ly  rewr i t t en  each t ime.  

There  is a broad class  of bodies for  which an orthogonal net can be constructed without difficulty. Figure 
2b shows an orthogonal net for  an angle bracket .  A net of this type can also be employed for  an I -beam which 
can be formed f rom such brackets .  This net was constructed by using a set  of s tandard p rograms  for  the nu- 
mer ica l  construct ion of a conformal  mapping by t r igonometr ic  interpolation. These s am e s tandard program s 
can be used to construct  orthogonal nets for  a lmost  all sect ions of the meta l lurgica l  industry,  which in the last  
analysis  pe rmi t s  the complete automation of the calculation of heating and cooling of various sect ions.  

NOTATION 

x, y, independent variables; u, v, orthogonal coordinates; F(w) = F(u + iv), function of a complex variable; 
g(u,v) = il aF(w)/~wli, Jacobian of transformation from (u,v) to (x,y); X, thermal conductivity; c, volumetric 
heat capacity; Q, heat release per unit volume; T, temperature; f, value of temperature on boundary of re.giop; 
T, time; L, I~, L2, differential operators; | (u, v), solution of differential problem in canonical region; 0 J, 0~, 

0i, t j, t~, 4,  network functions in canonical region; 0J, t ' J ,  solutions of di f ference problems using rec tangular  
and orthogonal nets respect ively;  {u i, Vk}, rec tangular  net in canonical region G; {xi, k, Yi,k~, orthogonal net in 
given region G*; Au i, Avk, dimensions of cell of rec tangular  net; l ui, 1~/Vi, k, dimensions of  cell of orthogonal 
net; h, l, maximum dimension of  cell  for  rec tangular  and orthogonal nets respect ive ly ;  A s, A 2, ~1, •2, differ-  
ence ope ra to r s  for  rec tangula r  and orthogonal  nets ;  A, B, C, D, A*, B*, C*, D*, coefficients  of difference 
scheme for rec tangular  net; D, ~,  B, coefficients of difference s cheme  for orthogonal net. 
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ANALYTIC SOLUTIONS OF PARABOLIC AND 

HYPERBOLIC HEAT-TRANSFER EQUATIONS 

FOR NONLINEAR MEDIA 

O. N. S h a b l o v s k i i  UDC 536.2.01 

New classes of analytic solutions are obtained which describe unsteady temperature distribu- 
tions and take account of the temperature dependence of the thermophysical properties of the 
material. The concept of a solution of the boundary layer transition type is introduced for the 
generalized heat-transfer equation. 

We consider the nonlinear heat-conduction equation in a one-dimensional plane region 

c(T)  T, = [~,(T) T~]~. (1) 

We introduce a new function ~ = ~(x, t) with the following properties: 

~ = u (T), 5 = 7,T:r 

T 

U (T) = Uo + 2 c(T)  dT, Uo~const. 
0 

We change f rom the variables (x, t) to new independent variables  (~, t): 

d~ = U (T) dx + (;~UT 0 dr, 

D (~, t)/O (x, t) = U =/: O, 

so that the initial Eq. (1) takes the form 

(T) Tt [)~ (V) Tt]~, ~ = cU -~, T = T (~, t), 

where the Car tes ian  coordinate is related to the new variable by the equation 

t 

x ( L t ) =  u ( ~ , o )  . 

0 

(2) 

(3) 

A compar ison  of Eqs. (1) and (2) shows that to each one-dimensional  unsteady tempera ture  distr ibution in a 
medium with the thermophysical  pa ramete r s  c(T) and X(T) there  corresponds  a cer ta in  one-dimensional  un- 
steady tempera ture  distr ibution in a medium with volumetric  heat capaci ty  fi (T) and a thermal  conductivity 

Scient i f ic-Research Institute of Applied Mathematics and Mechanics,  Tomsk State Universi ty.  Translated 
from Inzhenerno-Fiz icheski i  Zhurnal,  Vol. 40, No. 3, pp. 510-517, March, 1981. Original ar t ic le  submitted 
January  29, 1980. 

0022-0841/81/4003- 0319 $07.50 �9 1981 Plenum Publishing Corporat ion 319 


