the femperature; s, its parameter; I,(x), the Bessel function with imaginary argument of order v; Ky (x), the
MacDonald function of order v; <4 and @, dimensionless temperature; Po, Pomerantz number; Bi, Biot number;
Fo, Fourier's number; p, dimensionless polar radius; by*, dimensionless radius of the circle on which the in-
clusions are placed; R*, dimensionless radius of the plate.
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NUMERICAL METHOD FOR SOLVING HEAT-CONDUCTION
PROBLEMS FOR TWO-DIMENSIONAL BODIES OF COMPLEX
SHAPE

Yu. K. Malikov and V. G. Lisienko UDC 536.24.02

A finite-difference scheme is described for a curvilinear orthogonal net which permits the use
of a single algorithm for calculating bodies of various shapes.

The construction of curvilinear difference nets by calculating the conformal mapping of a canonical
region (rectangle) into the given region was described in [1]. Unlike a rectangular net which is typical for
the finite-difference method [2-4] and in practically important cases bears little resemblance to the bound-
aries of the body, an orthogonal net reflects the nature of the boundary, and has no nonregular nodes. An
orthogonal net is more convenient to work with than the nets commonly used in the method of finite elements
[5] since all quantities referring to the nodes of such a net (e.g., their coordinates) can be written in the form
of a rectangular matrix. Using equations of the elliptic type as an example, variational-difference schemes
for such nets were discussed in [6].

An analysis in [7] showed that finite-difference schemes have distinct advantages over variational-dif-
ference schemes in solving heat-conduction problems. For this reason the finite-difference method is of
great interest for solving heat-conduction problems with orthogonal nets [8]. The practical use of the algo-
rithm obtained confirmed its adequate accuracy, high speed, and, what is particularly important, the simplic-
ity of its application for bodies of various shapes. However, it is not clear from [8] under what conditions
and at what rate the scheme converges to the solution of the original equation.

We describe a procedure which employs a set of standard programs to automate the process of solving
the heat-conduction equation for a broad class of two-dimensional regions. Ifan orthogonal net is constructed
by conformal mapping, the rate of convergence of the finite ~difference scheme can be estimated.

Let the function F(w) = F(u + iv) map the rectangle G conformally into the region G* in the (x, y) plane.
We assume that F(u + iv) is known and that 8F /0w exists and is finite on the boundary Tof the rectangle. The
latter implies that G* is a curvilinear quadrangle in which all the angles are right angles.

We consider the problem for the heat-conduction equation posed in G*:

1
ar _IT-q 1)

4
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Fig. 1. Rectangular (a) and curvilinear (b) nets.

Tll"v = (X, Y, T)’ T(X, Y, O) = TO(X’ y)

T 0T
Here I'* ig the boundary of region G*; LT = % (l%— )+ ai(k 5 ); A=A(X, ¥y 1)3C=cC(X, ¥, T) > 0
Q=Q(x, ¥, 7). x * y Y
In the coordinates u, v Eq. (1) can be written in the form
L _Litrye=q @)
ot g
O = f(u, v, ©), O, v, 0)=T,(x, v).

2

Here I is the boundary of the rectangle G; 1,® = 9 (h 6—6) L,® _9 xﬁ v gy, v)= ]Ml —

ae \2 A2 ou Jdu du dv ow

x x
—_— — | >0
( ou ) +( ov ) \

Assuming that problems (1) and (2) have a unique solution,
O (u, v) = T(x(u, v), y(u, v). ()

We construct in G the net {(u = uj, v=vy), i=0,1 ... N, k=0, 1 ... Mishown in Fig. 1. In mapping the
rectangle G into G* the point (u;, vi) is mapped into the point (x(uj, vi) y(uj, vi)) and the side of the rectangle
Auj = {(Ui-p Vk)s (U, vk)} is mapped into an arc which subtends the chord lu(uj, vk, Auj) = v g(ljvk) AuﬁO(Au:’i).

The side of the rectangle Avy = {(uy, Vk-1)» (ui,vk)} is mapped into an arc with the chord
lv(u;, vy, Avy) = Vg(u,-, Jk) A, + O(Avi).

Here Uj = (Uj—y +ui)/2;\7k= (Vg + Vil 2.

We write for (2) a locally one-dimensional scheme [9], and solve in succession the equations

ot W0 ot — g
V1 - s (4)
i+1 ]
ot _62—:_(’1 — DAL — Fit12
with the initial conditions 0% = Ty (u, v), 6 = 6,3, =1, 2,...,63 =0,J%, j=0, 1, 2 .... The boundary condi-
i 0 1 2’y ] 9 1 ]

tions for @ 15 are the values of f(u, v, 71} on the sides of the rectangle G perpendicular to the u axis, and for

6 1j the values of f(u, v, 7i) on the sides perpendicular to the v axis. The solution of the problem is by defini-
tion the element 0 = 6,J. Here 6] ~@; CJ ~¢; Fi ~Q; D ~ 1/g are the values of the network functions at the
time 7j = ATy, We denote the coefficients of the difference operators A; ~L, and Ay ~ L, as follows:

Ai,k: K(L?i, Ug, Tj), B{,h: K(Hi, 51;, Tj),
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El:i = (Aui —]— Au,'_(_])/?, A_vk = (Avh -+ Avh+1)/2.

f 6 (u, v, 7) and Q (u, v, 7) are sufficiently smooth [9], the locally one-dimensional scheme (4) converges
uniformly to the solution of problem (2) at a rate O(? + A1, h = max(Auj, Avi), 1 =i=N, 1 =k=M.
We now assume that we know only the coordinates of the nodes of the orthogonal net {xj, k, yi k. Let

L =V (% p — Xi1,2) + (Y2 — Y1)

i =V (on— % p—1)2 + Wik — Yo,p—1)%
Tuip = (s p + luep)2, 10ip = (lvr, 51 + lo;)/2,

I = max(lu;p, loip), 1<Ci(N, I<Ch{M

We require that the conditions
Iusp = lu(u;, v, Aug)+ O (Aui + Avy),
losn = o (u;, Op, Avy) - O(AvE - Auf)

be satisfied. For this it is sufficient that
Xip = x (3, v) + O(Auf + Avg),

Yin = y (s, 0x)+ O(AW} + Avi).

Let us consider scheme (4) with perturbéd coefficients:
o) S TR 4 00),

Al — ( Xipt X1 Yk Y1
: \ 2 ’ 2 ’ Ay, i 1
Bl — A Xk Xip—1 , Yir+ Yip— ’ 1:;) % lugp + oy Biu(1+ 0(0),
2 2 Au; v

Cih = c (% Yims ©5) = CLa(l 4+ O(B),
Fily = Qxip Yins 15) = FLa(1 - 0(),

=AU AT_p (14 0().

D;p=———=
o+ lu,-,k lv;,k

After some simple transformations we obtain instead of (4)

o BB
C ]Tl—“AT—'_DiAitl =F ]+I/2,

ey BTNt T S U
C‘]TlT_D2A2t2T = F*i+1/2,

We specify the initial data in the form t,*J = t;*J*, j=0, 1, 2..., t** = T (xi,k, Vi, k) = oL +0a%), t*l=
The boundary values for t;*j and t,*] are specified on pairs of opposite sides of the curvilinear

to*l, §=1, 2....
quadrangle by the function f(x, y, 7). Because of (5) f(xi,k, Vi, ks T =1fj, v, 7) 2 + O (lz)) Here
Dy = lvigs Dy = Uluga;
thin— ik i, t:{kf tiin );
[Lli,k

o 1 -
A til = —— (Az]
dik =" T L

. . i’ .

i Ll — til tin— i1
— Bin ’
lv;,h

I 1 /. =i
ti] = = i :
Astin log (B At lvgnia
A, =1 Yipt Kok Ykt Y1k ;) (Torn + T 1,1)/2;
2 2
B{f,k _ 7\,< A1k +2x"'k_1 , Yk +2yi’k_1 , 1:]-) (T + Tt p1)/2.
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Fig. 2. Examples of the construction of an orthogonal net.

Thus, the coefficients in Eq. (6) are uniquely determined if the coordinates of the nodes of the orthogonal net
{Xi,k’ yi,k}are known. This permits considering (6) formally as a locally one-dimensional scheme aNpproxi—
mating the original Eq. (1) by an orthogonal net constructed in the curvilinear quadrangle G¥. Here A; and 7\"2
are positive self-adjoint operators which ensure the unconditional stability of the implicit scheme (6).

In the class of functions © having continuous derivatives 8°©/8u® and 82@/8v?, the following estimates
hold:

DA0 =DAO +0(l), DyAO =DAG + 0(1),

which enable one to prove the uniform convergence of t* to 6 at a rate of O(/), and consequently also the con-
vergence of t* to the solution of problem (2) at the rate O(/ + Ar). Taking account of (3) and (5), the uniform
convergence of t* and @ implies the uniform convergence of t* to the solution for T of the original problem (1)
at the rate O (I + AT): ’ :

NTH— 1l < M(E+AD), j=1, 2., @

where [ = max (luj k; Ivi,k), 1 =i=N, 1 =k =M.

The procedure described can be used in other schemes (e.g., longitudinal-transverse) and for other
boundary conditions, and enables one to obtain their analogs on an orthogonal net. In the case of a locally one-
dimensional scheme it is possible to treat more complicated regions G consisting of curvilinear quadrangles
Gi* in each of which its own orthogonal net is constructed. The transformation to an orthogonal net is always
considered as a small perturbation of the coefficients of the original scheme.

It can be required of any scheme that the solution depend continuously on the perturbation of the coeffi-
cients of the difference operator (the coefficient stability of the scheme). Hence it follows that the analog of
the scheme converges uniformly on an orthogonal net.

At the present time methods are being developed for constructing curvilinear nets in a preassigned re-
gion [10]; numerical methods of conformal mappings are also known [11]. Therefore, such a procedure enables
one to automate the solution of the heat-conduction equation in a complex region.

We note that the construction of an orthogonal net in a region is not unique; it can be constructed by tak-
ing account of the special features of the problem. An interesting example of this is the net in the quadrangle
abed shown in Fig. 2. In the neighborhood of point 2 the nodes are close together, which enables one to obtain
detailed information about the temperature distribution at this location. At point 1 the nodes of the net are far
apart, but it is known beforehand that the temperature gradients here are not large.

Calculations for such a region by the conventional locally one-dimensional scheme for a rectangular net
(933 nodes) and by our method for an orthogonal net (964 nodes) were compared. Figure 3a compares the solu-
tions of the nonlinear heat-conduction equation with zero initial conditions. The boundary conditions are shown
in Pig. 2a. Because of the strong temperature dependence of A and pc (Fig. 3b), the solution of the problem
resembles thermal waves. It is clear that both methods give practically the same result, but interpolation of
the temperature in the neighborhood of point 2 from its known values at the nodes is more reliably performed
with the orthogonal net, since it has a high density of nodes in this region. In this case the computational times
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Fig. 3. Comparison of calculations for a step region: a)
temperature distribution in cross sections AA (curve 1)
and BB (curve 2) for Fo = A;7/pgcXy? = 0.01; curves cal-
culated by our method (964 nodes of an orthogonal net),
points calculated by conventional method (933 nodes of a
rectangular net); b) dependence of thermal conductivity
A(T)/A (T = 0) and volumetric heat capacity pc (T)/pc(T =
0) on temperature T in °C.

for an orthogonal and a rectangular net turn out to be practically the same. Thus, even when the region is
subdivided into rectangular elements, the use of an orthogonal net may be expedient if, for example, it is
necessary to bunch the nodes of the net near a singular point.

The main advantage of the method described is that in switching from one body to another the same pro-
gram can be used, whereas with a rectangular net the whole program must be practically rewritten each time.

There is a broad class of bodies for which an orthogonal net can be constructed without difficulty. Figure
2b shows an orthogonal net for an angle bracket. A net of this type can also be employed for an I-beam which
can be formed from such brackets. This net was constructed by using a set of standard programs for the nu-
merical construction of a conformal mapping by trigonometric interpolation. These same standard programs
can be used to construct orthogonal nets for almost all sections of the metallurgical industry, which in the last
analysis permits the complete automation of the calculation of heating and cooling of various sections.

NOTATION

%, v, independent variables; u,v, orthogonal coordinates; F(w) = F(u + iv), function of 2 complex variable;
gu,v) =l 8F(w)/ dwll, Jacobian of transformation from (u,v) to (x,¥); A, thermal conductivity; ¢, volumetric
heat capacity; @, heat release per unit volume; T, temperature; f, value of temperature on boundary of region;
T, time; L, Ly, Ly, differential operators; ® (u,v), solution of differential problem in canonical region; 93, 9{,

6%, t), t], t%, network functions in canonical region; 0, t*j, solutions of difference problems using rectangular
and orthogonal unets respectively; {ui, vk}, rectangular net in canonical region G; {Xi,k’ Yi,k}’ orthogonal net in
given region G*; Auj, Avk, dimensions of cell of rectangular net; [ y; %, lvi,k’ dimensions of cell of orthogonal
net; h, I, maximum dimension of cell for rectangular and orthogonal nets respectively; Ay, Ay, Ay, K,, differ-
ence operators for rectangular and orthogonalnets; A, B, C, D, A*, B, C, D*, coefficients of difference
scheme for rectangular net; D, A , ﬁ, coefficients of difference scheme for orthogonal net,
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ANALYTIC SOLUTIONS OF PARABOLIC AND
HYPERBOLIC HEAT-TRANSFER EQUATIONS
FOR NONLINEAR MEDIA

O. N. Shablovskii UDC 536.2.01

New classes of analytic solutions are obtained which describe unsteady temperature distribu-
tions and take account of the temperature dependence of the thermophysical properties of the
material. The concept of a solution of the boundary layer transition type is introduced for the
generalized heat-transfer equation.

We consider the nonlinear heat-conduction equation in a one-dimensional plane region
e(TY Ty = [MT) Tl A1)
We introduce a new function & = £(x, t) with the following properties:
E=U(T), &=1Ty,

T
U(T)=U, + jc(r) dT, U, == const.
0

We change from the variables (x, t) fo new independent variables (¢, t):

dt = U(T) dx -+ (WUTy) dt,
DE /D (x, 1) = U0,

so that the initial Eq. (1) takes the form
B(T)Te=[MT)Tels, p=cU=2, T=T(E, 1), (2)

where the Cartesian coordinate is related to the new variable by the equation

3)

3
dg
x (& ) =§ — nggdt, U=UITE, 9.
UE 0
0
A comparison of Egs. (1) and (2) shows that to each one~dimensional unsteady temperature distribution in a
medium with the thermophysical parameters ¢(T) and A(T) there corresponds a certain one-dimensional un-
steady temperature distribution in a medium with volumetric heat capacity (T) and a thermal conductivity
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